# The Effect of PJ-34 and lonizing Radiation on Viability of MDA-MB-231 Human Triple Negative Breast Cancer Cell Line

Agnė Bartnykaitė<sup>1</sup>, Rasa Ugenskienė<sup>1,2</sup>, Arturas Inčiūra<sup>3</sup>, Elona Juozaitytė<sup>3</sup> <sup>1</sup> Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, <sup>2</sup> Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, <sup>3</sup> Oncology Institute, Lithuanian University of Health Sciences

### Objective

Radiation therapy plays an important role in the treatment of breast cancer but sometimes its effect is limited by the radioresistance of cancer cells. Poly (ADP-ribose) polymerase (PARP) is a family of proteins involved in many cellular processes, especially, DNA repair. Various PARP inhibitors have been demonstrated to exhibit anti-cancer activity as a single agents and in combination with chemotherapeutic agents or radiation therapy. PJ-34, one of the PARP inhibitors, has been shown to sensitize other types of tumor to chemotherapy and radiotherapy. However, the analysis has never been done on MDA-MB-231 human triple negative breast cancer cells in combination with ionizing radiation. Thus, the aim of the study was to analyze the combined effect of PJ-34 and ionizing radiation on proliferation of MDA-MB-231 cells.

#### Results

We examined the effect of PARP inhibitor PJ-34 and ionizing radiation on proliferation of MDA-MB-231 triple negative breast cancer cells using MTT assay (Fig. 1).

The results demonstrated that PJ-34 alone affects cells viability in a dose-dependent manner and the significant decrease was observed after the treatment with concentrations of 10 and 30  $\mu$ M.

Ionizing radiation alone also significantly reduced cell viability, however, the results following the radiation with 1 and 2 Gy were very similar.

For the combined effect analysis, cells were treated with PJ-34 and exposed to a single radiation dose of 1, 2 or 4 Gy. MTT assay revealed that the combination therapy of 10 and 30 µM PJ-34 and radiation (1, 2 and 4 Gy) produced a significant decrease in MDA-MB-231 viability in a dose-dependent manner in comparison to radiation alone.

**Inspire**Project

### Methods

Human triple negative breast cancer cell line MDA-MB-231 was used for the study. Cells were grown as monolayers in Dulbecco's Modified Eagle's medium (DMEM; Sigma-Aldrich) supplemented with 10% fetal bovine serum (Gibco), 100 U/mL penicillin with 100  $\mu$ g/mL streptomycin (Gibco) and 2 mM L-glutamine (Gibco) at 37°C in humidified 5% CO<sub>2</sub>.

PJ-34 solution was purchased from SigmaAldrich, and frozen at -80°C in small quantities to prevent freeze-thaw cycles. Working solutions were prepared before each experiment.

Cells were treated with different concentrations of PJ-34 one hour before irradiation. Cell irradiations were performed with the single dose of 1, 2, and 4 Gy, using a medical Clinac 2100C/D linear accelerator. Cells were irradiated with the drug present in the medium, and were immediately returned to the incubator.

The effect on MDA-MB-231 breast cancer cells was evaluated by MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) cell proliferation assay 71 hours after the irradiation.



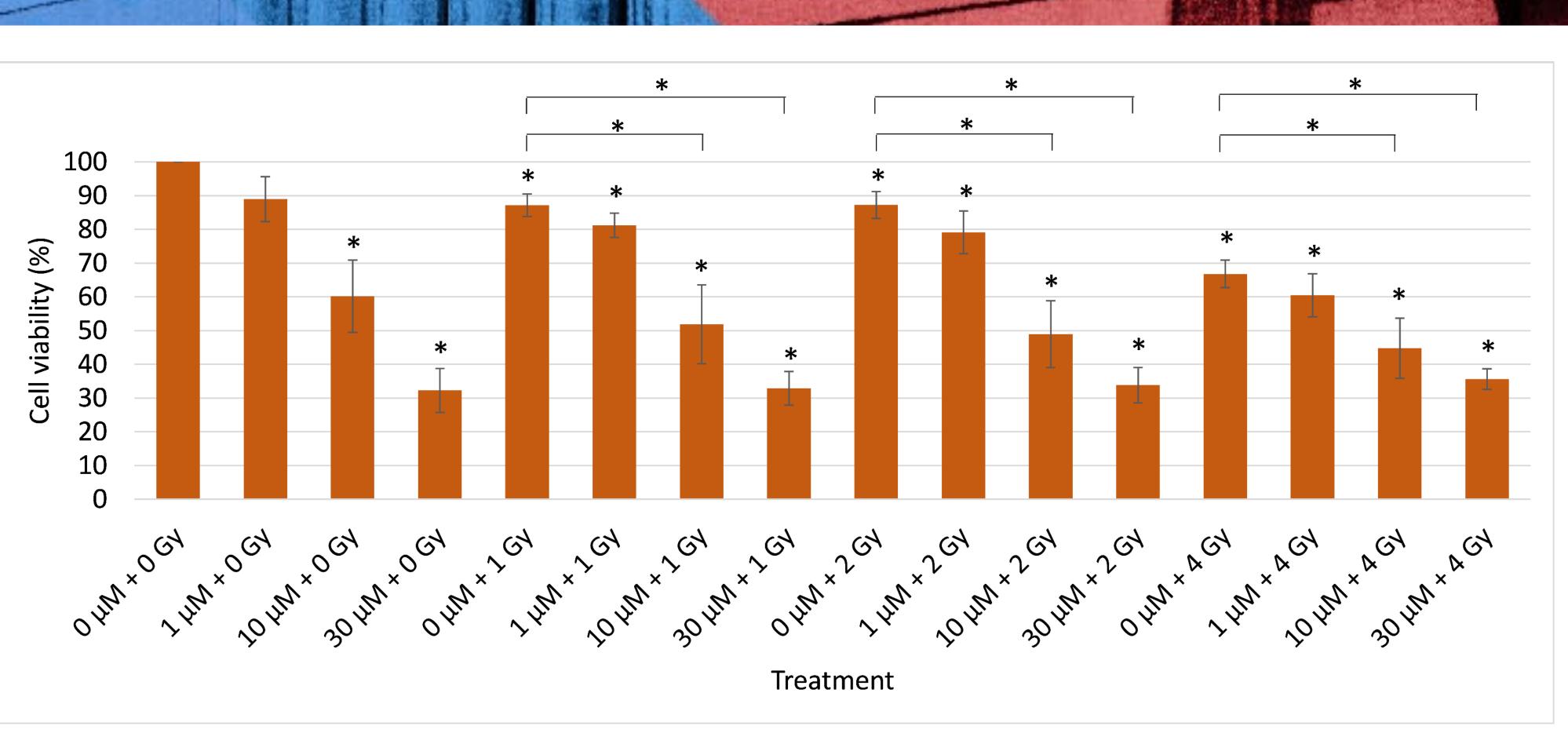



Figure 1. MDA-MB-231 cells viability determined by MTT assay 71 hours after the irradiation. Data are shown as % of untreated control group (0 µM + 0 Gy). All error bars represent the SD. (\*) means difference compared with untreated group, \*p < 0.05.

## 6<sup>th</sup> Kaunas / Lithuania International Hematology/Oncology Colloguium 28 May 2021

#### Conclusions

Overall, the current findings suggest that PJ-34 improved the response to ionizing radiation on MDA-MB-231 cells by increasing the inhibition of cell proliferation. It can be concluded that PJ-34 acts as a radiosensitizer and requires further study to elucidate the molecular mechanisms responsible for the sensitizing effect.

**ACKNOWLEDGMENTS**. This work was funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 730983 (INSPIRE).

#### Key words

breast cancer, MDA-MB-231, PJ-34, ionizing radiation