

Why are cybersecurity and functional monitoring for substations critical?

Cybersecurity and Functional Monitoring for Substations Webinar

Our Motivation

- We have been active in network communication in the power grid for 20 years
- Cybersecurity is a new problem for our wellknown customers
- Current security solutions speak a foreign language for protection and control engineers

Our Goal

- IT security officers and substation engineers should be able to work together efficiently.
- Cybersecurity systems should be usable and useful for IT and OT officers.

How to secure your substation/SCADA network?

Identify the status quo

Identify the risk for cyberattacks; identify assets and their vulnerabilities

- Protect against the highest risks
 - Technical measures, but also organizational measures
- Detect threats and prohibited activity
 - Allows you to minimize damage and learn for next time
- Respond to detected threats
 - E.g., investigate security alerts

Recover

E.g., clear malware from Gateways, or patch/replace IEDs

NIST CSF: Basis for many national security guidelines

How to Identify your risk?

Most guidelines¹ recommend keeping "a current list of installed components and their properties".

Why?

Security advisories about substation devices are published frequently

My substations are at risk if

- certain device types with
- certain firmware version and
- in certain network setup

are used.

¹ For example: **ISO 27001** A.8.1.1 and **IEC 62443**-3-3 SR7.8 and NIST SP 800-53 rev. 5, CM-8(2)

Recent examples:

ICS Advisory (ICSA-21-082-02)

3.1 AFFECTED PRODUCTS The following firmware versions of MU320E are affected:

• All firmware versions prior to v04A00.1

ICS Advisory (ICSA-21-131-03)

3.1 AFFECTED PRODUCTS

The following Siemens Linux based products are affected:

- RUGGEDCOM RM1224: All versions between v5.0 and v6.4
- SCALANCE M-800: All versions between v5.0 and v6.4
- SCALANCE S615: All versions between v5.0 and v6.4
- SCALANCE SC-600: All versions prior to v2.1.3
- SCALANCE W1750D: v8.3.0.1, v8.6.0, and v8.7.0

ICS Advisory (ICSA-21-096-01)

4.1 AFFECTED PRODUCTS

- Relion 670 series Version 1.1, all revisions
- Relion 670 series Version 1.2.3, all revisions
- Relion 670 series Version 2.0, all revisions
- Relion 670/650 series Version 2.1, all revisions
- Relion 670/650 series Version 2.2.0, all revisions
- Relion 670/650/SAM600-IO series Version 2.2.1, all revisions
- Relion 670 series Version 2.2.2, all revisions
- Relion 670 series Version 2.2.3, all revisions
- Relion 650 series Version 1.1, all revisions
- Relion 650 series Version 1.2, all revisions
- Relion 650 series Version 1.3, all revisions
- RTU500 CMU firmware release 7.x
- RTU500 CMU firmware release 8.x
- RTU500 CMU firmware release 9.x
- RTU500 CMU firmware release 10.x
- RTU500 CMU firmware release 11.x
 RTU500 CMU firmware release 12.x

How to establish an asset inventory?

Manually

Misses many "unexpected" devices

Passive discovery

- Only network card vendor, IP address and services used can be found out
- Firmware version is not among them

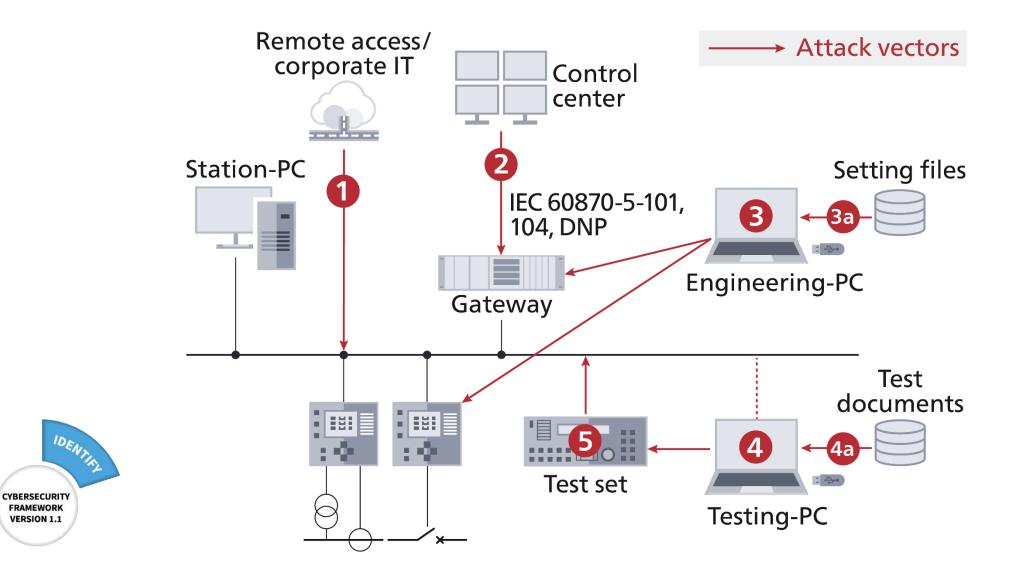
Active discovery using MMS

- Firmware version
- Type/model information

Using engineering file import (SCL files)

Firmware version and HW config. directly entered by vendor engineering tool

Asset Inventory Discovery & Export

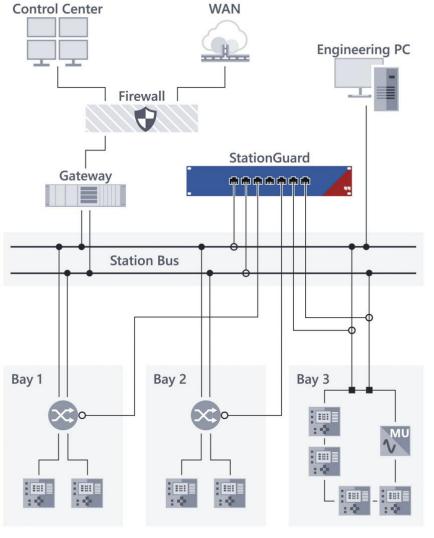

- Asset information collected from
 - Passive asset discovery
 - Engineering files SCL
 - Active device interrogation (companion tool StationScout)

< > 🕎	AA1D1Q02Q2
▲ Details	
Status:	Okay
Vendor:	ACME
Model:	PROTEC 400
Hardware version:	8AK86-JAAA-AA0-0AAAA0-AH0112-23113A-AA
Software version:	3.14
A Network interface	'S
P1 68:65:6C:6C:30:34 192.168.1.153	
Roles	

	Α	В	С	D	E	F	G	Н	1	J
1	Name 🗾 💌	Description 🗾	Hardware version 🛛 🔽	Model 🛛 💌	Serial 💌	Softwa 💌	Vendor 💌	IP addresses 💌	Origin 🔽	MAC addresses 💌
2	AA1D1Q01Q1	Transformer infeed bay Q01	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.150	system_scd_v3.2	68:65:6C:6C:30:31
З	AA1D1Q02Q1	Bay control unit Q02 - Starnberg	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.152	system_scd_v3.3	68:65:6C:6C:30:33
4	AA1D1Q02Q2	Disconnector control unit Q02 - S	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.153	system_scd_v3.3	68:65:6C:6C:30:34
5	AA1D1Q03Q1	Bay control unit Q03 - Passau	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.154	system_scd_v3.3	68:65:6C:6C:30:35
6	AA1D1Q03Q2	Disconnector control unit Q03 - P	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.151	system_scd_v3.3	68:65:6C:6C:30:36
7	AA1D1Q04Q1	Transformer bay Q04	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.155	system_scd_v3.3	68:65:6C:6C:30:37
8	AA1D1Q05Q2	320kV measuring bay - Merging U	1	MU 300			ACME	192.168.1.157	system_scd_v3.3	68:65:6C:6C:30:39
9	AA1H1Q01Q1	Transformer 33kV bay Q01	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.160	system_scd_v3.3	68:65:6C:6C:30:32
10	AA1H1Q02Q1	Transformer 33kV bay Q02	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.161	system_scd_v3.3	68:65:6C:6C:31:30
11	BB_PROT	Busbar Protection	8AK86-JAAA-AA0-0AAAA0-AH0112-231	PROTEC 400		3.14	ACME	192.168.1.173	system_scd_v3.3	68:65:6C:6C:30:30
12	HMI	IHMI		HMI 300			ACME	192.168.1.200	system_scd_v3.3	68:65:6C:6C:31:31
13	PCPQS1	Disturbance data collector		COLLEC 400			ACME	192.168.1.190	system_scd_v3.3	
14	RTU1	RTU for transformer bays		RTU 600			ACME	192.168.1.201	system_scd_v3.3	68:65:6C:6C:31:32
15	RTU2	RTU for feeder bays		RTU 600			ACME	192.168.1.202	system_scd_v3.3	68:65:6C:6C:31:33

How substations can be attacked (Attack Vectors)

Countermeasure: Intrusion Detection Systems (IDS)


- History shows attacks often prepared long before
- Given enough time, attackers can always come through
- Detection allows to respond before damage is done
- Compromised devices **behave different** or fail

CYBERSECURITY

FRAMEWORK

VERSION 1.1

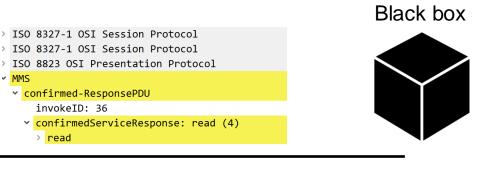
DETECT

Problems of Current IDS

Signature-based

- > PC virus scanner approach
- > Very few exploits/attacks known for our niche

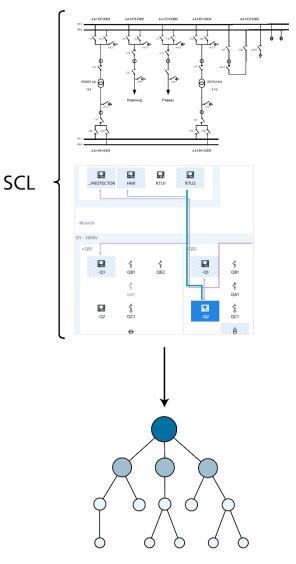
Baseline-method, "learning-based"


- > Many false alarms: switching, maintenance, routine testing, ...
- > Complex alerts, because the IDS doesn't understand the meaning of the messages

Difficult for to analyze, even for experts

MMS

> read

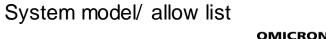

StationGuard Approach

StationGuard knows the substation

- Function of each device known from SCL or assigned roles
- Each packet evaluated against live system model
 - > Allow list (whitelist) principle: alarm by default
- Maintenance and testing is part of system model
- Detailed <u>verification</u> of whole communication
- Detects not just cyber threats, but also malfunctions

Cyber Security Monitoring <u>and</u> Functional Monitoring

System model/allow list



What about other protocols?

- Modern substations: 98% of traffic is IEC 61850
 Detailed system model approach possible
- Other protocols: DNP3, IEC-104, Modbus, FTP, HTTP ...
 - Deep packet inspection and application detection
- All connections must be allowed in the system model

Src./dest. MAC + src./dest. IP + VLAN + Port Number + Application

Proprietary protocols protected by Maintenance Mode

Protocols with Deep Packet Inspection

OT Protocols

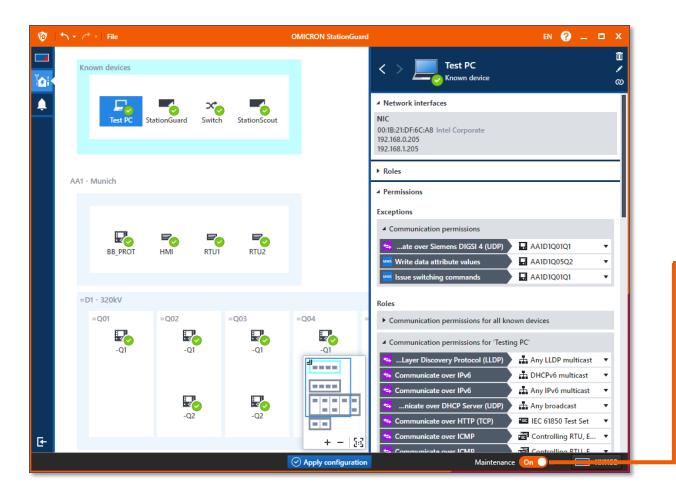
- ▶ IEC 61850
- ▶ IEC 62439-3 PRP and HSR (with RedBox)
- ▶ IEC 60870-5-104 (-101 and -103 over TCP/IP)
- DNP3
- Modbus TCP (and Modbus RTU over TCP/IP)
- IEC 62056 (DLMS/COSEM)
- IEEE C37.118 (Synchrophasor protocol)
- IEEE 1703-2012 / ANSI C12.22 (AMI protocol)
- ▶ IEC 60870-6 TASE.2/ICCP

IT Protocols (more than 300)

- ► FTP
- HTTP
- SSH, HTTPS (application detection without decryption)
- RDP
- NTP
- SNMP
- netbios (Windows file sharing)
- ARP, DHCP
- MySQL, MSSQL, PostgreSQL
- telnet
- ICMP, ICMPv6
- RIPv2
- SSDP
- MDNS

• ...

How do I configure StationGuard?


- In case of IEC 61850 substations:
 Import the SCL file(s)
- 2. Assign roles to remaining devices

RTUs

- Engineering PCs, Switches, Time Server
 ...
- 3. Add additional permissions based on alerts
 - "All Engineering PCs may use vendor protocol X, but only during maintenance."

< > Test PC Known device		© ∕ ■		
▲ Network interfaces				
NIC 48:2A:E3:24:87:C5 Wistron InfoComm(Kunshan)Co.,Ltd. 192.168.1.3				
✓ Roles No Role Engineering PC	☐ Windows PC ✓ Testing PC			
 ☐ IEC 61850 Test Set ☐ Monitoring RTU ☐ Station Controller ☐ IEC 61850 IED ☐ Fault Record Collector 	Control Center Controlling RTU Generic IED IEC 60870-5-104 IED Time Server			
 Router Permissions 	Switch	_		

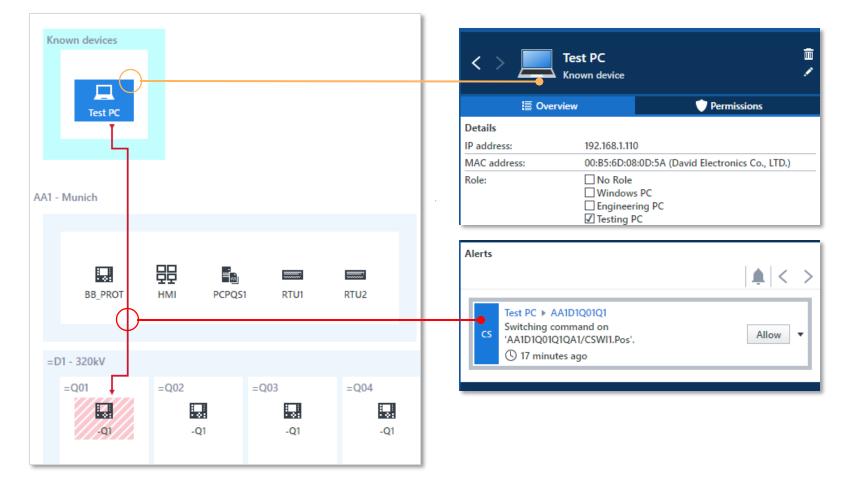
Built-in Support for Commissioning and Maintenance

Normal operation

- Engineering PCs must not use engineering protocols and web interfaces
- Remote access not allowed
- Activating IED Test Mode not allowed

Maintenance

- Engineering PCs may use certain engineering protocols and web interfaces
 - Certain remote connections allowed
 - Activating IED Test Mode allowed


24/7 Functional Monitoring – Examples

- Detects device configuration changes Monitoring of configuration revision fields in messages
- Continuous GOOSE transmission time measurements Detecting failures in devices, network, or time synchronization
- Logging of critical events:
 - Control commands on switchgear, tap changers, etc.
 - Monitoring and logging of file transfers including file names.

A	2020-10-31 10:42:15.255Z	G	AA1D1Q01Q1 GOOSE multicast Configuration revision (ConfRev) newer than expected in GOOSE 'AA1D1Q01Q1LD0/LLN0\$GO\$gcb_switchgear'.
A	2020-10-31 10:42:15.255Z	G	AA1D1Q01Q1 I GOOSE multicast Wrong VLAN identifier in GOOSE 'AA1D1Q01Q1LD0/LLN0\$GO\$gcb_switchgear'.
A	2020-10-31 10:42:15.255Z	G	AA1D1Q01Q1 GOOSE multicast Wrong destination MAC address in GOOSE 'AA1D1Q01Q1LD0/LLN0\$GO\$gcb_switchgear'.
A	2020-10-31 10:40:25.165Z	G	AA1D1Q03Q1 ► GOOSE multicast Unknown GOOSE 'AA1D1Q03Q1Protection/LLN0\$GO\$gcb_2' found on network.
A	2020-10-31 10:09:52.866Z	cs	Test PC ► AA1D1Q01Q1 Switching command on 'AA1D1Q01Q1QA1/CSWI1.Pos'.
A	2020-10-31 09:32:43.987Z	G	AA1D1Q03Q1 ► GOOSE multicast IED indicates time synchronization failure (ClockNotSynchronized) in GOOSE 'AA1D1Q03Q1CONTROL/LLN0\$GO\$gcb

Security officers and engineers need to work together

- Protection and control engineers are needed in alert analysis
- User interface should allow engineers and security officers to analyze the cause **together**

OMICRON

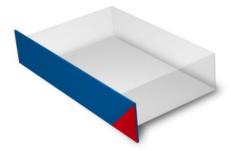
Auditable Allow List

- Full control who communicates how and with whom
- Full control which laptops are used
- Logging of critical actions
- Can be audited by security experts without being on-site

▲ Permissions						
Exceptions						
Communication permissions						
	RTU1 🔻					
😝 Communicate over Siemens DIGSI 4 (UDP)	AA1D1Q01Q1					
Roles						
• Communication permissions for all known devices						
Communication permissions for 'Testing PC'						
🖶 over 802.1 Link Layer Discovery Protocol (LLDP)	Any LLDP multicast					
🖘 Communicate over IPv6	DHCPv6 multicast					
🖘 Communicate over IPv6	Any IPv6 multicast					
🖘 Communicate over DHCP Server (UDP)	Any broadcast 🗸					
🖘 Communicate over HTTP (TCP)	🖬 IEC 61850 Test Set 🔹 🔻					
🖘 Communicate over ICMP	🗗 Controlling RTU, Engineering 🔻					
🖘 Communicate over ICMP	🛛 🗗 Controlling RTU, Engineering 🔻					
🖘 Communicate over IGMP	Any IPv4 multicast					
🗲 Communicate over LLMNR (UDP)	Any IPv4 multicast					
🗲 Communicate over mDNS (UDP)	Any IPv4 multicast					
🗲 Communicate over netbios-ns (UDP)	Any broadcast 🔹					
🗲 Communicate over netbios-ns (UDP)	Any broadcast 🔹					
🖘 Communicate over NTP (UDP)	Time Server 🔹					

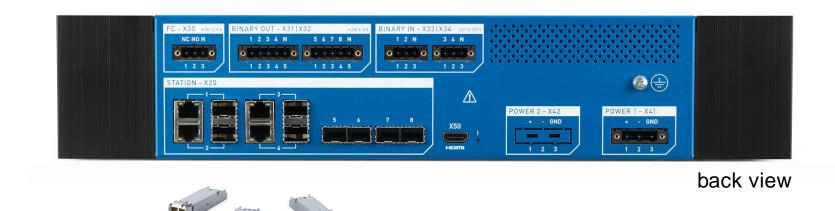
StationGuard Platform Options

StationGuard on RBX1


- Made for permanent installation in substations
- Ultra-high performance

- StationGuard on MBX1
 - Mobile applications, temporary usage
 - Security assessments in substations
 - Temporary monitoring during commissioning

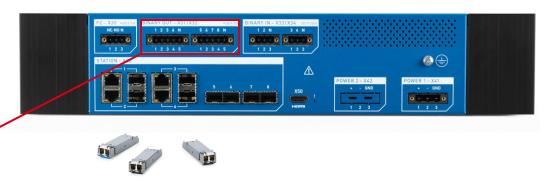
StationGuard on virtual machine
 Installation on existing computing platforms¹

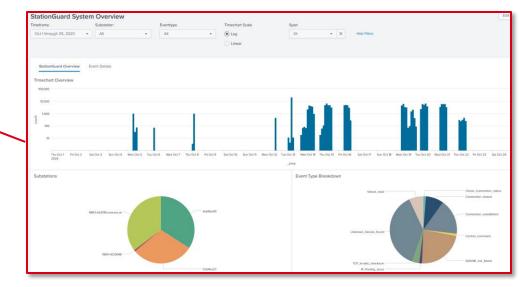


¹ available Q3/Q4 2021

RBX1 Hardware Platform

- ▶ 8x Gigabit SFP fiber Ethernet ports
- Monitor 8+ separate networks simultaneously
- Binary I/Os for alarms and fault signal contact
- DC supply, redundant option
- Extreme cybersecurity hardening
- Rugged and fan-less design, IEC 61850-3 compliant





How to integrate StationGuard?

- StationGuard Dashboard for central monitoring
 Which substations show an alarm?
- Integration into SCADA signal list using binary outputs
 Easy way to get IDS status into the control room
- Integration into SIEM Systems
 - Using Syslog and plug-ins
- Integration into ticket systems and CMDBs
 - Using Plug-Ins and export functions

SIEM integration example (Splunk App)

Case study: Installation in legacy substations, 2018-2021

- Outdated/incomplete SCD?
 - Generated the SCL file from the live system
- Findings:
 - More **external connections** than expected
 - Different departments creating connections to substation equipment
 - NTP time synchronization issues
 - MMS communication errors between IEDs
 - > Interoperability issues
 - > Configuration errors

Conclusion

- Many ways to attack a substation
- Firewalls alone are not enough
- Security solutions must speak the language of protection and control engineers
- StationGuard is tailor-made for detecting intrusions in substations

Thank you for your attention!

www.stationguard.com

