VALORIZATION OF AGRI-FOOD WASTES & BY-PRODUCTS: CONTRIBUTIONS OF ERA-CHAIR IN VALORTECH [Food (By-) Products Valorisation Technologies]

Dr. Rajeev Bhat

Professor & Chair-Holder ERA-Chair in VALORTECH, Estonian University of Life Sciences Kreutzwaldi 56/5, Tartu 51006, Estonia, EU Email: <u>rajeev.bhat@emu.ee</u> & <u>rajeevbhat1304@gmail.com</u>

in your future

European Regional

Development Fund

Estonian University of Life Sciences

www.emu.ee

International Scientific Conference Circular bioeconomy a shift towards sustainable food production

13-14 October 2022 | hybrid event | Tartu, Estonia

Key themes of the research town:

>Circular economy (Circular bioeconomy)

- ≻Green deal
- ➤Green revolution
- ➤Sustainable food production
- Climate-neutral economy
- ➤Valorization technologies
- ➤ Digitalisation
- ➢ Green university initiative

Sustainable waste/by-products management strategies:

- Minimise the natural resources consumed;
- Adopt appropriate food processing technologies;
- Minimize wastes/by-products generated;
- RRRR (reduce, reuse, recycle, recover) + concepts of circular bioeconomy.
- Why? Mainly for environmental concerns (landfills, burning, and composting are common)
- Unsustainable disposal: High costs incurred

The SDGs were set up in 2015 by the United Nations General Assembly and are intended to be achieved by 2030 POLITICS

CORONAVIRUS

CULTURE SPORTS

SPORTS

CULTURE

Nearly €164 million worth of food discarded every year in Estonia

NEWS

ERR 30.05.2021 09:12

A 🖸 🖸

ECONOMY

Groceries Source: Kairit Leibold/ERR

A survey commissioned by the Ministry of the Environment reveals that around 84,000 tons of food worth around €164 million is discarded in Estonia every year.

Food Bank: Most of the surplus food in Estonia goes to waste

A Toidupank van. Source: ERR

September 29, the first International Day of Awareness of Food Loss and Waste, will be celebrated by a video conference where the Estonian Food Bank (Toidupank), the Ministry of Social Affairs and many

HOME	BALTICS	SOCIAL	POLITICS	MONEY	INTERVIEWS	OPINIONS	INVESTIGATION

Home > Baltics > Estonia

BALTICS ESTONIA SOCIAL

Research: Estonian food waste amounts to 84 000 tonnes of foodstuffs per year

In Estonia:

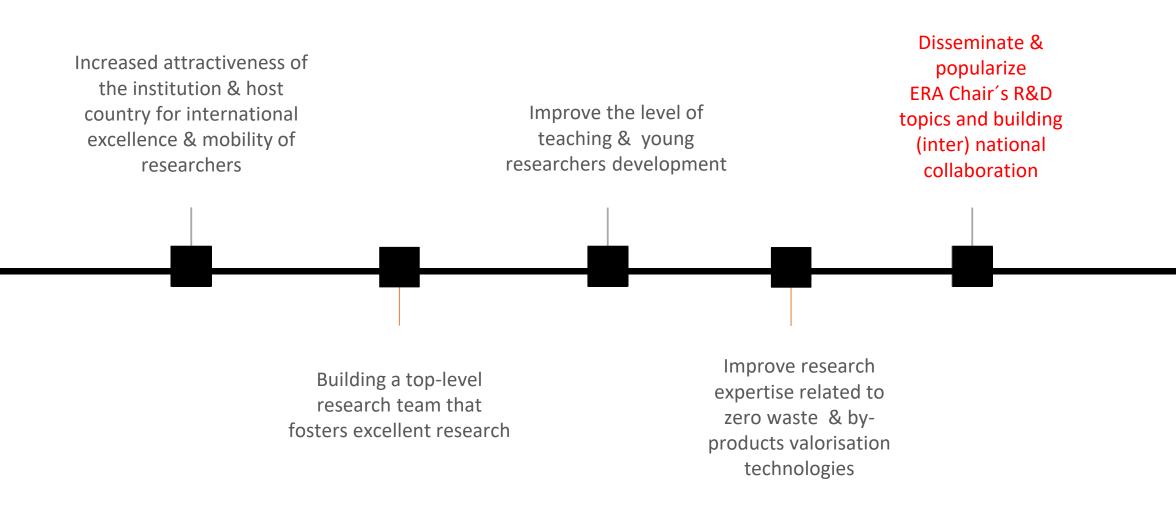
- According to a study made by the Ministry of the Environment: Estonians throw away 63 million Euros worth of food every year, and a third of this would still be usable.
- Food waste: in households (42%), food processing industry (39%), catering services (14%) and retail services (5%).
- (<u>https://vm.ee/en/newsletter/estonia-combat-food-waste</u>)

ABOUT ERA-CHAIR in VALORTECH

The ERA (European Research Area) Chair, funded by the EU Horizon 2020 program, was launched in 2018:

Aim: To create a new chair focusing on the application of advanced technologies for minimum waste generation & maximum utilisation of by-products (valorisation) for value addition.

The broader vision related to the creation of the ERA Chair in VALORTECH: This Chair will develop into


a leading centre of research excellence & as a strong partner for local industries offering practical

values to increase efficiency, reduce waste and explore new business opportunities.

EXPECTED IMPACTS

Contribution of ERA-Chair in VALORTECH to the academia, research & industry

- Specialty teaching module is offered for Masters students:
 Subject code VL.1331 Valorisation of Agri-food By-products:
- - Both Estonian & Erasmus students are taking the course.
- During the last 2 academic years, >15 Master's and 8 PhD students have taken the courses of the revised curricula; in total they have obtained 321 ECTS credit points from the changed or new subjects (MSc students 253 ECTS and PhD students 68 ECTS).

R & D activities:

• Publications (Jan. 2019 to October 2022):

 Journal articles: 22 (+ 06 submitted)-Impact factored journals
 Book chapters: 12 (+ 04 Submitted)
 Popular articles/news: 05
 Conference papers: 22
 Invited keynotes: 12

Training activities & reaching out to public:

- (i) International lecture sessions with the sub-theme focusing on 'Biomass Valorization and Bioprocessing Technologies' & 'Green extraction technologies' were introduced
- (ii) A series of Webinars related to 'Food Wastes and by-products valorization' have been introduced
- (iii) Summer Schools have been successfully completed: "Valorization of Food Industry Wastes and By-products", held in hybrid mode
- (iv) More seminars, webinars, summer/winter schools to be conducted by end of 2022 and early 2023

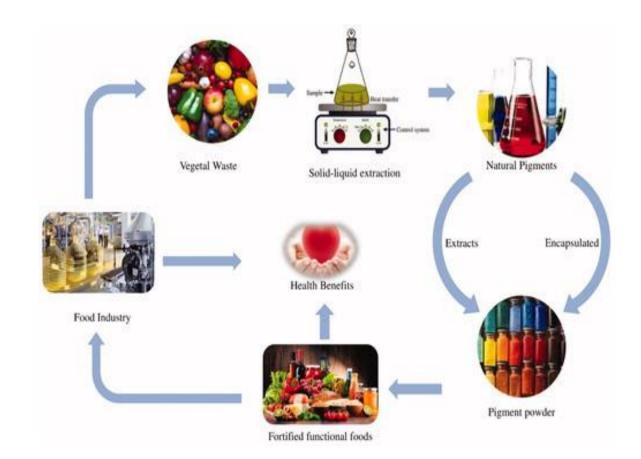
Industry: Collaboration efforts:

- (i) <u>Innovation cluster MTÜ Liivimaa Lihaveis</u> in cooperation with the cluster our researcher is carrying out product development tests for the production of meat products enriched with plant additives.
- (ii) <u>Scanola Baltic AS, Baltimere Invest AS</u> Ensuring the supply of by-products from oil & protein concentrate production, used for Valortech PhD students (research experiments).
- (iii) Valortech researchers are working in cooperation with the <u>representative of Estonian Chamber of Agriculture and</u> <u>Commerce</u>
- (iv) Estonia's well-established food company <u>Estonian Bread</u> <u>Industry (Eesti Leivatööstus AS) in Tartu</u>
- (v) <u>Murimäe winery</u>: Understanding the Nordic viticulture system and various agronomic practices involved in the sustainable production of wine
- (vi) <u>'Anu Ait OÜ</u>: opportunities for collaboration, solutions for livestock feed production in the local market

Valorization of Food Industrial Wastes & By-products

Fruits & Vegetable processing industry:

Bioactive compounds, flavoring compounds, natural food colorants, Compost, Biogas, etc. Dairy industry: Colostrum (Ig are more: high in nutrients), Whey Fish industry: Fish wastes (Gelatin, oils, fertilizer) Poultry Wastes: Feather, skin, egg shell, excreta (Fertilizer, bio-fuel, bioplastic) Meat Industry: Bones, skin, etc Underutilized produce: Wild fruits, vegetables, legumes Opportunities: Food, Cosmetics & Pharmaceutical industries

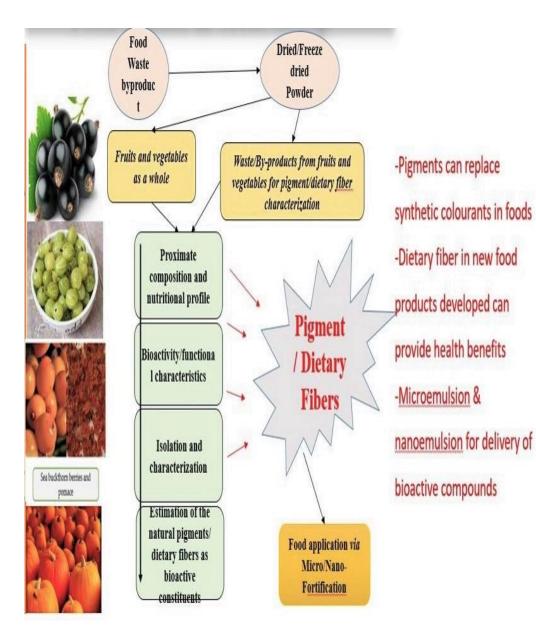

Zero wastes, Taste the Waste, Waste to Wealth concepts & Technological innovations....

Applications: Food, Cosmetics & Pharmaceutical industries:

High value-added components:

- Functional foodsSupplements (dietary fiber)
- Nutraceutical products
- Food preservatives(Antioxidant compounds)
- Natural colorants (Pigments)
- Livestock feed
- Bioplastics
- Plant Ev's in the medical field

Raw materials (wastes & by-products) investigated:



Review Articles

Valorization of fruits and vegetable wastes and by-products to produce natural pigments Minaxi Sharma [®], Zeba Usmani [®], Vijai Kumar Gupta [®] & Rajeev Bhat [®] [®] Pages 535-563 | Received 05 Jan 2021, Accepted 05 Jan 2021, Published online: 26 Feb 2021 Compload citation [®] https://doi.org/10.1080/07388551.2021.1873240

Open Access Article

Extraction of Carotenoids from Pumpkin Peel and Pulp: Comparison between Innovative Green Extraction Technologies (Ultrasonic and Microwave-Assisted Extractions Using Corn Oil)

by 😵 Minaxi Sharma * 🖾 🙆 and 🤳 Rajeev Bhat 🖾 😳

Open Access Article

Valorisation of Sea Buckthorn Pomace by Optimization of Ultrasonic-Assisted Extraction of Soluble Dietary Fibre Using Response Surface Methodology

by 😤 Shehzad Hussain * 🖂 🧕 🧟 Minaxi Sharma 🖂 🗐 and 📣 Rajeev Bhat 🖂 🎯

ERA-Chair for Food (By-) Product Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr.R. Kreutzwaldi 56/5, 51006 Tartu, Estonia

Author to whom correspondence should be addressed.

Winery wastes:

- Effect of cultivation & growth factors on phytoconstituents
- Optimizing extraction techniques for recovery of targeted bioactive compounds
- Chemometric assessment, polyphenolic content and antioxidant activity of bioactive compounds
- Flavonols (quercetin), Stilbenoids
 (ε-viniferin)

Recommendations for sustainable food production

icle

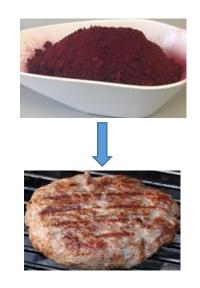
Recovery of Polyphenols from Vineyard Pruning Wastes—Shoots and Cane of Hybrid Grapevine (Vitis sp.) Cultivars

Reelika Rätsep ^{1,2,*}, Kadri Karp ³, Mariana Maante-Kuljus ³, Alar Aluvee ², Hedi Kaldmäe ² and Rajeev Bhat ¹

Open Access Article

Polyphenols and Resveratrol from Discarded Leaf Biomass of Grapevine (*Vitis* sp.): Effect of Cultivar and Viticultural Practices in Estonia

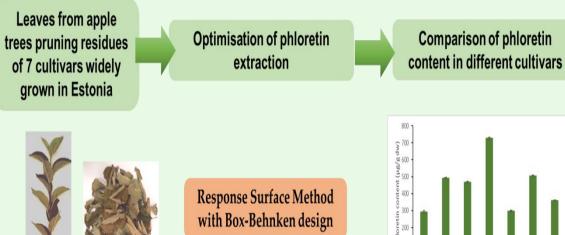
by 🙁 Reelika Rätsep ^{1,2,*} 🖾 💿, 😤 Kadri Karp ³ 🖂, 😤 Mariana Maante-Kuljus ³ 🖂, 😤 Alar Aluvee ² 🖾 and 🍓 Rajeev Bhat ¹ 🖾 💿

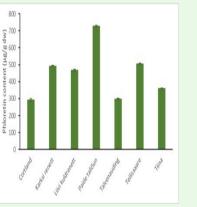

Valorisation of different genotypes (17 cultivars) of rowan berries for functional food ingredients

X		A	A A
	00		
	22		JAN.

- The addition of rowanberry pomace extracts & defatted pomace to meat products would give extra value to these products in terms of their shelf-life & additional fibre content.
- The lipophilic components obtained from SC-CO2 fractionation of rowanberry pomace can be used as nutraceuticals due to their high content of beta-carotene and PUFAs
- Rowanberry pomace could
 replace artificial preservatives
 (meat preservatives)

Open Access Article

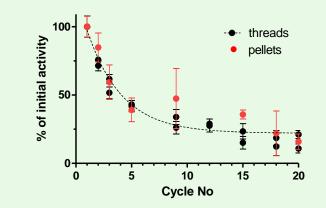

Antioxidants Characterization of the Fruit, Juice, and Pomace of Sweet Rowanberry (*Sorbus aucuparia* L.) Cultivated in Estonia


by 😵 Viive Sarv ^{1,2,*} ⊠, 🧟 <u>Petras Rimantas Venskutonis</u> ^{1,3} ⊠ 🤨, 😵 Reelika Rätsep ^{1,2} ⊠ 🧐, 😵 Alar Aluvee ¹ ⊠, 😵 Rita Kazernavičiūtė ³ ⊠ and 🍓 Rajeev Bhat ² ⊠ 🎯

Open Access Review

The Sorbus spp.—Underutilised Plants for Foods and Nutraceuticals: Review on Polyphenolic Phytochemicals and Antioxidant Potential

Valorization of apple by-products



Immobilization of pectinase and cellulase on nylon carriers for multiple enzyme use

Potential application as a bioactive additive in food

Open Access Feature Paper Article

Optimization of Ultrasound-Assisted Extraction of Phloretin and Other Phenolic Compounds from Apple Tree Leaves (Malus domestica Borkh.) and Comparison of Different Cultivars from Estonia

by 🐧 Sana Ben-Othman ^{1,*} 🖾 🧕 🙁 Hedi Kaldmäe ² 🖂 😫 Reelika Rätsep ^{1,2} 🖾 🧶 Uko Bleive ² 🖾 Alar Aluvee 2 🖾 and 🙁 Toonika Rinken 1.* 🖾

Immobilized enzymes can increase the efficiency of berries juice production

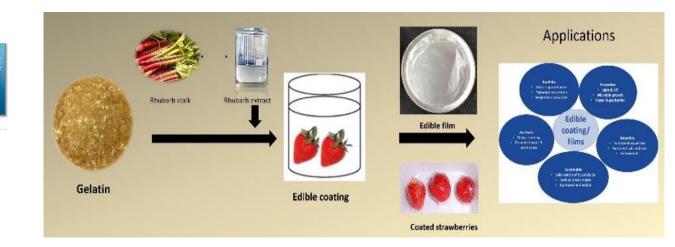
Open Access Article

Immobilization of Pectinolytic Enzymes on Nylon 6/6 Carriers

- by 🜒 Sana Ben-Othman 1.* 🖾 😳 and 👰 Toonika Rinken 1.2.* 🖾
- ERA Chair for Food (By-) Products Valorisation Technologies Valortech, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia
- ² Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Authors to whom correspondence should be addressed

Bioplastics production from oil industry & fish industry wastes/by-products:

- Improve mechanical properties (thickness, tensile strength, elongation at break), gas permeability, water vapour permeability, moisture and water barrier properties
- Biodegradability in compost, soil and aquatic environment)
- Gelatin-based edible coating and films with rhubarb extract for preserving the quality of food products


Rapeseed husk

Fish wastes

Possibility to replace petroleum based plastics

Sustainable Chemistry and Pharmacy Volume 18, December 2020, 100326

Valorization of food processing wastes and byproducts for bioplastic production

Katrin Jõgi 🎗 🖾, Rajeev Bhat 🞗 🖾

Development of livestock feed:

Hempseed hull & sea buckthorn pomace

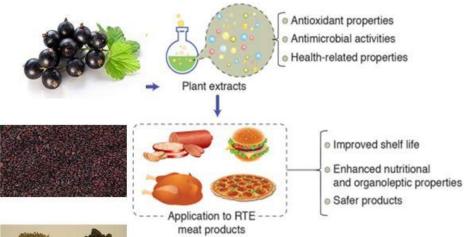
- Composition, amino acids, minerals, fatty acids, antioxidant compounds, *in vitro* digestibility, *in vitro* gas production (in cooperation with SLU)
- Feed analyses & marketing

Major outcome:

Sustainable production of livestock feed that is expected to tackle environmental pollution & feed shortage in the future

Agronomy Research 18(S3), 1760–1795, 2020 https://doi.org/10.15159/AR.20.086

Review article: Current research trends in fruit and vegetables wastes and by-products management-Scope and opportunities in the Estonian context


D. Malenica^{*} and R. Bhat

Estonian University of Life Sciences, Insitute of Veterinary Medicine and Animal Siences, Kreutzwaldi 56/5, EE51006, Tartu, Estonia

Low cost, nutritious livestock feed can be developed

Development and application of vegetable origin additives for improving safety and health benefits of meat products

Outcome: Results obtained can help to improve safety & quality of meat products and mitigating health hazards of processed & red meat (carcinogenicity).

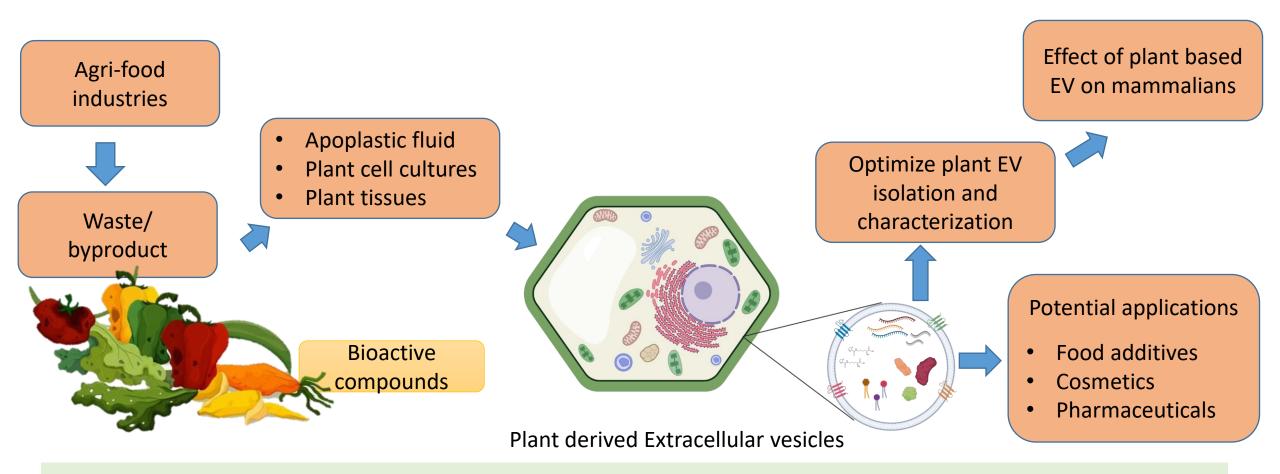
Open Access Article

Application of Raw and Defatted by Supercritical CO₂ Hemp Seed Press-Cake and Sweet Grass Antioxidant Extract in Pork Burger Patties

by 😵 Kristi Kerner ^{1,2,3} 🖂 🤨 😵 Ivi Jõudu ^{1,3} 🖾 😳 😵 Alo Tänavots ^{1,4,*} 🖾 😳 and 😵 Petras Rimantas Venskutonis ^{2,*} 🖂 💿

Oat β -glucan valorization

Investigate the effect of adding β -glucan and probiotics bacteria (e.g. *L. acidophilus, L. casei* sp.) on producing low-fat yoghurt.


Outcome: The production of low-fat yoghurt containing prebiotic dietary fiber (β-Glucan) & probiotic starter will improve its functional quality & shelf life with promoting its consumer acceptance.

Agronomy Research 18(S3), 1689–1699, 2020 https://doi.org/10.15159/AR.20.024

Enrichment of the low-fat yoghurt with oat β-glucan and EPS-producing *Bifidobacterium bifidum* improves its quality

M. Ibrahim^{1,2,*}, N. Barakova¹ and I. Jõudu^{2,3}

Purification and characterization of Extracellular vesicles:

Hypothesis : Fruit and vegetable wastes have functional EVs capable of affecting mammalian tissue & cell function.

Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges

Editor: Rajeev Bhat


- 1st Edition: Paperback
 ISBN: 9780128240441
 - Imprint: Academic Press/Elsevier
 - Published Date: 1st September 2021
 - Page Count: 994

Valorization of Agri-Food Wastes and By-Products

Recent Trends, Innovations and Sustainability Challenges

- What new innovations can be expected?
- What all sectors are affected and benefitted?
- New market opportunities in Estonia and beyond
 Economic benefits for local industries?
 Life Cycle Analysis (LCA) needs to be undertaken
- ✓ Suggestions for policy-makers?
- ✓ Knowledge transfer of lab-generated data.
- ✓ Support new start-ups

References & additional reading materials:

- FAO. Food losses and waste in the context of sustainable food systems http://www.fao.org/documents/card/en/c/f45cf2c1-aff7-4304-a11d-4fbf0e594ddb
- Fusions (2016). <u>http://www.eufusions.org/phocadownload/Publications/Estimates%20of%20European%20food%2</u> <u>0waste%20levels.pdf</u>
- Hussain et al. 2020. Dietary Fiber from Underutilized Plant Resources-A Positive Approach for Valorization of Fruit and Vegetable Wastes. Sustainability 12, 5401; doi:10.3390/su12135401.
- Jõgi K & Bhat R. 2020. Valorization of Agri-Food Wastes for Bioplastics Production. Sustainable Chemistry and Pharmacy, 18, 100326, <u>https://doi.org/10.1016/j.scp.2020.100326</u>.
- Mahato, N., Sharma, K., Sinha, M., & Cho, M. H. (2018). Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. Journal of Functional Foods, 40, 307-316.
- Naviglio, D., Scarano, P., Ciaravolo, M., & Gallo, M. (2019). Rapid Solid-Liquid Dynamic Extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods, 8(7), 245, <u>https://doi.org/10.3390/foods8070245</u>.
- Rouhou, et al.2018. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (*Opuntia ficus* indica): Structural and microstructural studies. In : *International Journal of Biological Macromolecules*. 116, 901-910. DOI 10.1016/j.ijbiomac.2018.05.090.
- Sharma M, Usmani Z, Gupta VK, Bhat R. 2021. Valorization of fruits and vegetable wastes and byproducts to produce natural pigments. Critical Reviews in Biotechnology, <u>https://doi.org/10.1080/07388551.2021.1873240</u>.

Acknowledgements:

VALORTECH project has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 810630.

To all the research collaborators of VALORTECH

► All the research staff of VALORTECH

Senior research fellows, Research fellows, & Doctoral students (who are and were linked with VALROTECH)

THANK YOU!

For more information visit our VALORTECH website:

https://www.valortecherachair.com/

Contacts:

Rajeev Bhat: <u>rajeev.bhat@emu.ee</u> Oliivika Zeiger: <u>oliivika.zeiger@emu.ee</u>

ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences

Acronym: VALORTECH Duration of the project: 01.07.2019 – 30.06.2023 Programme: H2020 - Horizon 2020 Call: H2020-WIDESPREAD-03-2017-ERAChairs Project number: 810630

Coordinator: Estonian University of Life Sciences (EMU) and maximum utilization of raw material used as well as valorization of by-products constitute a highly relevant range of topics in the EU and worldwide. These are matters that the University of Life Sciences (Eesti Maadilikool, EMU) has been dealing with for a long from various angles and perspectives. However, to realize the full potential of EMU in this domain, structural changes are needed to bring various related competencies under a unified umbrella as well as to cover several gaps hindering further development.

Advanced food processing technologies, minimum waste

The main objective of the VALORTECH ERA Chair is to establish a new internationally recognized research team, and recruit a top-level researcher/research manager (ERA Chair holder) to lead this interdisciplinary, inter-unit entity, formed based on a joint effort by the Institute of Agricultural and News

October 19, 2021 On 2nd of November Valortech is organising a guest lecture session "Biomass Valorization and Bioprocessing Technologies" The registration is open. Register <u>HERE</u>

October 19, 2021 On 28th of October Valortech is organising a workshop/webinar "Food Waste Valorization: Natural Pigments Perspectives". The registration is open until 25th of October. Register <u>HERE</u>

October 4, 2021 The first Valortech ERA Chair Summer School "Valorization of Eard Industry Marter and Pro-

Reduce, Reuse, Recycle, Recover